Quantum-chemical insights from deep tensor neural networks

نویسندگان

  • Kristof T. Schütt
  • Farhad Arbabzadah
  • Stefan Chmiela
  • Klaus R. Müller
  • Alexandre Tkatchenko
چکیده

Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol-1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bridging Many-Body Quantum Physics and Deep Learning via Tensor Networks

The harnessing of modern computational abilities for many-body wave-function representations is naturally placed as a prominent avenue in contemporary condensed matter physics. Specifically, highly expressive computational schemes that are able to efficiently represent the entanglement properties which characterize many-particle quantum systems are of interest. In the seemingly unrelated field ...

متن کامل

Deep Learning in Chemoinformatics using Tensor Flow

OF THE THESIS Deep Learning in Chemoinformatics using Tensor Flow By Akshay Jain Master of Science in Computer Science University of California, Irvine, 2017 Professor Pierre Baldi, Chair One of the widely discussed problems in the field of chemoinformatics is the prediction of molecular properties. These properties can range from physical, chemical, or biological properties of molecules to the...

متن کامل

Deep Learning and Quantum Entanglement: Fundamental Connections with Implications to Network Design

Formal understanding of the inductive bias behind deep convolutional networks, i.e. the relation between the network’s architectural features and the functions it is able to model, is limited. In this work, we establish a fundamental connection between the fields of quantum physics and deep learning, and use it for obtaining novel theoretical observations regarding the inductive bias of convolu...

متن کامل

Logic Tensor Networks: Deep Learning and Logical Reasoning from Data and Knowledge

We propose Logic Tensor Networks: a uniform framework for integrating automatic learning and reasoning. A logic formalism called Real Logic is defined on a first-order language whereby formulas have truth-value in the interval [0,1] and semantics defined concretely on the domain of real numbers. Logical constants are interpreted as feature vectors of real numbers. Real Logic promotes a well-fou...

متن کامل

Learning Dynamics of Deep Networks Admit Low-rank Tensor Descriptions

Deep feedforward neural networks are associated with complicated, nonconvex objective functions. Yet, simple optimization algorithms can identify parameters that generalize well to held-out data. We currently lack detailed descriptions of this learning process, even on a qualitative level. We propose a simple tensor decomposition model to study how hidden representations evolve over learning. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017